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Based on the real-space finite-difference method, we have developed a first-principles den-
sity functional program that efficiently performs large-scale calculations on massively-par-
allel computers. In addition to efficient parallel implementation, we also implemented
several computational improvements, substantially reducing the computational costs of
OðN3Þ operations such as the Gram–Schmidt procedure and subspace diagonalization.
Using the program on a massively-parallel computer cluster with a theoretical peak perfor-
mance of several TFLOPS, we perform electronic-structure calculations for a system con-
sisting of over 10,000 Si atoms, and obtain a self-consistent electronic-structure in a few
hundred hours. We analyze in detail the costs of the program in terms of computation
and of inter-node communications to clarify the efficiency, the applicability, and the pos-
sibility for further improvements.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

First-principles calculations based on the density functional theory (DFT) [1,2] have been performed on a variety of mate-
rials and have provided important microscopic information for physical properties based on quantum theory [3–5]. Thus,
among various theoretical methodologies, DFT is a top choice at present for clarification and prediction of phenomena in
condensed matter. The popularity of DFT is due to its relatively low computational costs and its reasonable accuracy, which
often favor it over elaborate and highly accurate quantum chemistry approaches such as the configuration-interaction [6] or
the diffusion Monte-Carlo approaches [7]. Although there are a few report that the exceptionally large-scale DFT calculations
have been achieved [8,9], the usual target systems to which DFT can be applied easily are still limited to medium-sized sys-
tems consisting of hundreds to one thousand of atoms. Recent research interests in condensed matter and the material sci-
ences require DFT calculations for much larger systems such as nanoscale systems. For instance, in semiconductor science,
the typical size of metal–oxide–semiconductor field-effect transistors is on the nanometer scale. For such systems quantum
mechanical simulations are important for understanding device characteristics [10,11]. Furthermore, in the life sciences, cor-
relations between atomic structures and the bio-functions of in vivo proteins are hard to clarify without the help of simu-
lations based on quantum theory [12,13]. Since nanoscale systems consist of 10,000–100,000 atoms or more, it is imperative
to perform drastically large-scale calculations based on DFT to address these important subjects, and it is impossible to carry
out such large-scale calculations with traditional computational programs. Thus, several computational approaches have
been investigated intensively.
. All rights reserved.
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One promising approach is the order-N method [14] in which mathematical problems are re-formulated so as to utilize
the possible localized nature of unitary-transformed wave functions or density matrices. However, another approach exists
in which the conventional order-N3 exact formulation is adopted and drastic improvements are achieved in the performance
of the computer codes through restructuring and tuning for state-of-the-art computer architectures.

For the latter approach, the real-space finite-difference pseudopotential method proves to be a key ingredient because the
methods are suitable for parallel computations. The real-space method for first-principles electronic-structure calculations
was first proposed by Chelikowsky et al. in 1994 [15], and then, various developments and applications have been performed
by many researchers [8,16–21]. Recently the real-space method have been applied for unprecedentedly large size Si nano-
crystals by Zhou et al. [8]. In the real-space methods, singular ionic potentials are replaced by smoother pseudopotentials
[22], and Schrödinger-type quantum mechanical equations are discretized on three-dimensional spatial grids and the solu-
tions are produced by treating them as finite-difference (FD) equations. In principle, the matrix of the real-space formulation
is sparse and fast Fourier transformation (FFT) is unnecessary for Hamiltonian matrix operations. The FFT-free character con-
trasts with the conventional plane-wave methods [23,24], and provides a great advantage by easing the communication bur-
den in parallel computations.

To date, the real-space method have achieved the calculations for the systems of thousands of atoms in the order-N3 exact
formulation [8,9]. The real-space method is also promising for much larger systems containing 10,000–100,000 atoms.
Therefore it is important to understand the computational details of the state-of-the-art real-space method, including the
algorithms, implementations, and the performances, for further development of the first-principles calculations with the
next-generation supercomputers. In this paper, we present a detailed description of our real-space DFT (RSDFT) code
developed recently to overcome the size limitation of our computing system by utilizing the power of massively-parallel
computing. We also investigate in detail the computational costs of RSDFT code to clarify how to study large systems using
next-generation supercomputers.

The algorithm employed in our code is rather conventional, so that the computational costs scale as OðN3Þ. However, there
are several benefits to develop the code based on the conventional algorithm. First, we already know its applicability, accu-
racy, and suitable choices of computational parameters such as cut-off energies and sampling k points. Second, we are able to
concentrate on particular problems in large-scale calculations, such as numerical precision, convergence behavior, and the
reliability of the total-energy calculation itself. The present study focuses on the computational aspects in large-scale real-
space calculations. Thus, the programming techniques developed for RSDFT are also applicable to other methods, e.g. order-N
methods.

In Section 2, we briefly review the basics and fundamental equations of DFT. In Section 3, we present a similar formula-
tion to that of Section 2, but in a discrete space for real-space FD calculations. Although the Sections 2 and 3 are somewhat
repetitious for the specialists of the DFT calculations, we add them by the following reason; for future development of the
first-principles calculations, we must need the help of the specialists of computer and computational sciences to bring out
the best performance of the supercomputers, and we aim to remove the barrier at the entrance of the DFT calculations for the
non-DFT specialists. In Section 4, we summarize the computational parameters and the several initial configurations for the
parallel computation. In Section 5, we describe the overall algorithm of our RSDFT code and the details of several main sub-
routines. We introduce a new algorithm to accelerate OðN3Þ operations in Gram–Schmidt orthogonalization and in subspace
diagonalization. In Section 6, we present the performance tests of our code and analyze the costs of computation and com-
munication. In Section 7, we show several practical applications dealing with Si crystal, nanometer-scale Si quantum dots,
and Si nanowires. Finally, we present a summary and conclusion in Section 8. Acronyms used in this paper are summarized
in Table 1.

2. Density functional theory

The ultimate purpose of DFT calculations is to minimize an energy functional E½q� with respect to the electron density q.
Following the standard Kohn–Sham DFT formalism [2], we introduce the orbital /n, and assume that the electron density is
expressed as a sum of the absolute square of the orbitals
qðrÞ ¼
XMB

n¼1

fnj/nðrÞj
2 ð1Þ
and the minimization is performed with respect to the orbitals. In Eq. (1), MB is the total number of orbitals and fn is the
occupation number for the nth orbital. The explicit form of the energy functional in terms of the orbitals is
E½/� ¼
XMB

n¼1

fn

Z
dr/�nðrÞ �

1
2
r2

� �
/nðrÞ þ

1
2

Z
dr
Z

dr0
qðrÞqðr0Þ
jr� r0j þ Exc½q� þ

Z
drvLðrÞqðrÞ

þ
XMB

n¼1

fn

Z
dr
Z

dr0/�nðrÞvNLðr; r0Þ/nðr0Þ; ð2Þ
where the density q is given by Eq. (1), and Exc is the exchange-correlation energy. Exc represents many-electron effects and
its exact form is unknown. However, several approximate functionals are available [25,26]. The vL and vNL are the local and



Table 1
List of acronyms used throughout this paper.

Acronym Meaning

DFT Density functional theory
FD Finite-difference
RSDFT Real-space density functional theory (the name of our code described in this paper)
GS Gram–Schmidt
CG Conjugate-gradient
SD Subspace diagonalization
RQ Rayleigh quotient
SCF Self-consistent field
MPI Message passing interface
BLAS Basic Linear Algebra Subprograms
SCALAPACK Scalable Linear Algebra Package
PACS-CS Parallel array computer system for computational sciences (the name of the massively-parallel cluster at Center for Computational

Sciences, University of Tsukuba)
DOS Density of states
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non-local pseudopotentials that describe the interaction between ions and valence electrons [22]. The use of the pseudopo-
tential is crucial for reducing the computational costs, because it removes the core states from the calculation, and makes the
potentials smooth. Typically, the non-local potential is further approximated as [27]
vNLðr; r0Þ ¼
XN

a¼1

XLa

l¼0

Xl

m¼�l

CalmpalmðrÞp�almðr0Þ; ð3Þ
where N is the number of atoms, La is the maximum angular momentum (typically 0–2), Calm is the coefficient, and palm is the
projector function that is localized within a spherical region Xa around each atom. Explicitly, palm is
palmðrÞ
–0 ðr 2 XaÞ;
¼ 0 ðr R XaÞ:

�
ð4Þ
The energy minimization must be performed under the ortho-normalization constraints
Z
dr/�mðrÞ/nðrÞ ¼ dmn: ð5Þ
Therefore, it is convenient to recast the minimization problem from the constrained form into the unconstrained form by
introducing the Lagrange multipliers emn:
d
d/�m

E½/� �
XMB

m¼1

XMB

n¼1

emn

Z
dr/�mðrÞ/nðrÞ

( )
¼ 0: ð6Þ
From Eq. (6), we obtain the Kohn–Sham equation for the orbitals
�1
2
r2 þ vhðrÞ þ vxcðrÞ þ vLðrÞ þ v̂NL

� �
/nðrÞ ¼

XMB

n¼1

emn/nðrÞ; ð7Þ
where the operator v̂NL is defined as
v̂NL/ðrÞ ¼
Z

dr0vNLðr; r0Þ/ðr0Þ: ð8Þ
In Eq. (7), vh is the Hartree (or Coulomb) potential which can be written in integral form as
vhðrÞ ¼
Z

dr0
qðr0Þ
jr� r0j ð9Þ
or in differential form as
r2vhðrÞ ¼ �4pqðrÞ ð10Þ
in which case it is called the Poisson equation. In Eq. (7), vxc is the exchange-correlation potential which is defined as a func-
tional derivative of the exchange-correlation energy
vxcðrÞ ¼
dExc

dqðrÞ : ð11Þ
Typically, the approximate exchange-correlation functionals [25,26] are given their explicit functional form, so that the func-
tional derivatives can be calculated in a straightforward manner.
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Since the Lagrange multipliers can be expressed in the diagonal form through a unitary transformation of the orbitals, the
Kohn–Sham equation can be rewritten in the simpler form
�1
2
r2 þ vhðrÞ þ vxcðrÞ þ vLðrÞ þ v̂NL

� �
/nðrÞ ¼ en/nðrÞ: ð12Þ
Solving Eq. (12) is the main task of DFT calculations. Since vh and vxc depend on the density, and, through Eq. (1), also depend
on the orbitals, we must solve Eq. (12) self-consistently.

In addition to the orbitals, the atomic coordinates fR1;R2; . . .g are also variables of the DFT energy functional. Thus, we can
perform the atomic-structure optimization by minimizing the energy functional with respect to the atomic coordinates. Usu-
ally, the energy functional has several local minima where the gradient vector with the coordinate of atom a
ga ¼ �
@E
@Ra

ð13Þ
is zero for all a, and each local minimum corresponds to a (meta-)stable structure of the system. Once the Kohn–Sham equa-
tion is solved for a fixed atomic configuration, then the gradient vector can be calculated using
ga ¼ �
Z

drqðrÞ @vLðrÞ
@Ra

�
XMB

n¼1

fn

Z
dr
Z

dr0/�nðrÞ
@vNLðr; r0Þ

@Ra
/nðr0Þ: ð14Þ
This is called the Helmann–Feynman force [28], and is suitable for numerical force calculations because the derivatives of the
local and non-local pseudopotentials are easily obtained from their analytical expressions.

3. DFT on three-dimensional grid space

To numerically minimize the energy functional, we introduce a three-dimensional spatial grid and consider the minimi-
zation problem within the discrete space of ML grid points. Then the orbitals, density, and potentials are expressed as column
vectors whose elements are the value at each grid point. For example,
~/ ¼

/1

..

.

/i

..

.

/ML

0
BBBBBBBB@

1
CCCCCCCCA
; ð15Þ
where the ith element is the value at the grid point ri:
/i ¼ /ðriÞ: ð16Þ
In this discrete scheme, the energy functional can be written as
E½/1;/2; . . . ;/ML � ¼ �1
2

XMB

n¼1

fn

XML

i¼1

XML

j¼1

/i�
n Lij/

j
nDX� 4p

2

XML

i¼1

XML

j¼1

qiL�1
ij qjDXþ Exc q1;q2; . . . ;qM

L

� �
þ
XML

i¼1

v i
Lq

iDX

þ
XMB

n¼1

fn

XML

i¼1

XML

j¼1

/i�
n VNL

ij /j
nDX; ð17Þ
where DX is the volume element. The matrix fLijg is the Laplacian in discrete space; i.e., an FD operator. The formula for the
higher-order FD coefficients, from which the matrix fLijg is constructed, is given in Appendix A, and the Laplacian in oblique-
coordinate systems is given in Appendix B. VNL is the matrix for the non-local pseudopotential whose operation is defined as
XML

j¼1

VNL
ij /j ¼

XMI

a¼1

XLa

l¼0

Xl

m¼�l

Calmpi
alm

X
j2Xa

pj�
alm/jDX: ð18Þ
The second term in the right-hand side of Eq. (17) represents the Hartree energy. This form can be derived from that the
Hartree potential ~vh, which satisfies the Poisson equation (in discrete space):
L~vh ¼ �4p~q: ð19Þ
The density is defined as
qi ¼
XN

n¼1

fn /i
n

��� ���2: ð20Þ
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Ortho-normalization constraints for the orbitals can be written as
XML

i¼1

/i�
n /i

mDX ¼ dmn: ð21Þ
Minimizing the following functional,
@

@/i�
n

E½/1;/2; . . . ;/ML � �
XMB

m¼1

XMB

n¼1

emn

XM

i¼1

/i�
n /i

mDX

( )
¼ 0; ð22Þ
we finally reach the eigenvalue equation for the orbitals
H~/n ¼ en
~/n; ð23Þ
where
H ¼ �1
2

Lþ V þ VNL ð24Þ
is the Hamiltonian, L is a sparse matrix of the FD operator, VNL is the matrix of the non-local operator Eq. (18), and V is the
diagonal matrix whose elements are the sum of the local potentials ~vh; ~vxc , and ~vL.

The Helmann–Feynman force of an atom a can be calculated from
ga ¼ �
XML

i¼1

qi @v i
L

@Ra
DX�

XMB

n¼1

fn

XML

i¼1

XML

j¼1

/i� @VNL
ij

@Ra
/jDXDX: ð25Þ
4. Computational set up and parallelization

The systems for which we chose to perform DFT calculations may be classified into two categories: (1) a system with peri-
odic boundary conditions for orbitals and (2) a system with decaying boundary conditions. Crystalline solids or supercell
geometries are typical of the former, and molecules or clusters belong to the latter. For both systems, we first must set
the number N, the position, and the species of each atom in the unit cell. Since we are usually interested in the behavior
of chemically active valence electrons, we treat the nucleus and inert core electrons together as an ion, and the interaction
between the ion and valence electrons is described with the pseudopotential [22], as explained above. The pseudopotentials
are prepared by pre-processing DFT calculations, and stored to external files. In the RSDFT code, we begin by reading the
pseudopotential data from the external files, and then we prepare the pseudopotentials on each grid point by interpolation.
Usually, we do not use the raw data for the interpolation, but rather the data preconditioned by Fourier-filtering [29] or the
double-grid method [30]. These preconditionings are essential to reduce the so-called egg-box effect which is a spurious en-
ergy dependence on atomic position relative to neighboring grid points. Another preconditioning method exists in which the
high-frequency Fourier components are perfectly filtered out by constructing the pseudopotentials in reciprocal space. This
method is standard in plane-wave DFT code, but it is only applicable to periodic systems. However, localization in reciprocal
space corresponds to delocalization in real space, and thus the integral region for the inner products extends over the unit
cell. Consequently, the computational costs for the pseudopotential operation become OðN3Þ. With our code, we have the
choice of the two (for molecular or cluster systems) or three (for periodic systems) preconditioning methods.

From the number of atoms and their species, we get the number of valence electrons needed to neutralize the positive
ionic charges. To perform the calculations for charged systems, we give the number of excess or deficit electrons as an input
(a fractional number is also allowed). The total number of electrons Ne in the system is the sum of them. The number of orbi-
tals MB is determined as MB P Ne=2 (we concentrate on the spin-unpolarized case in this paper). The occupation numbers fn

in Eq. (1) are determined from the corresponding eigenvalues of the Kohn–Sham equation, so that
XMB

n¼1

fn ¼ Ne; f n ¼
2

1þ exp en�eF
kBT

� 	 ; ð26Þ
where eF is the Fermi energy, which determines the border between occupied and unoccupied Kohn–Sham eigen states. kBT
is a fictitious temperature which controls the broadening of the occupation.

Once the ionic coordinates are specified, we can construct an initial electron density as a superposition of the pseudo-
atom densities, which are accompanied with the pseudopotential calculation [22]. Initial Hartree and exchange-correlation
potentials are calculated from the initial electron density, and initial orbitals are prepared using a random-number generator
and ortho-normalized by Gram–Schmidt procedure.

For solids, or all periodic systems, the unit cell, which is a parallelepiped, is the domain of the orbitals, and the orbitals are
periodically connected from the unit cell to the adjacent unit cell. The unit cell is specified by the three lattice vectors~a1; ~a2,
and ~a3. In the real-space method, we define the spatial grid by dividing each lattice vector by an integer, so that the grid-
spacing Hi ði ¼ 1;2;3Þ takes the form
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Hi ¼
j~aij
Mi

: ð27Þ
The total number of grid points is ML ¼ M1M2M3, and the volume element is DX ¼ X=ML, where X is the volume of the unit
cell. The Kohn–Sham equations for periodic systems must be solved under the boundary condition for the ~a1 direction
/ðiþM1; j; kÞ ¼ /ði; j; kÞ: ð28Þ
Similar conditions apply for the~a2 and~a3 directions. It is easy to divide the unit cell, which is a parallelepiped domain, into
equal-shaped sub-domains, making the number of grid points equal in each sub-domain. This is essential to achieve good
load balances in parallel computations.

For molecules, or all isolated systems such as atoms and clusters, we introduce a finite domain outside of which the orbi-
tals are essentially zero. To surround the molecular geometry with a sufficiently large vacuum region, we choose a spheri-
cally or cylindrically shaped domain. We employ a Cartesian coordinate system in which the origin is set at the center of the
sphere (or cylinder), and then we divide the x-, y-, and z-directions by a grid-spacing H and use the grid points within the
domain. Contrary to the case for a parallelepiped unit cell, it is difficult to divide a spherical or cylindrical domain into equal-
shaped sub-domains. In this case, we are obliged to vary the shape of each sub-domain so that the number of grid points in
each sub-domain remains as nearly equal as possible.

In addition to three-dimensional periodic systems (solids) and zero-dimensional isolated systems (molecules), there are
one-dimensional systems (wires and tubes) and two-dimensional systems (surfaces and interfaces) in nature, and these are
also important targets in the condensed matter physics and the material science. Usually, these systems are treated in super-
cell models with periodic boundary conditions or cluster models with decaying boundary conditions. Although these models
have provided many productive results, the boundary conditions are obviously artificial and we have to take care of the
effect of the artifacts for concluding physical results. The natural boundary conditions for the one- and two-dimensional
systems are combinations of the periodic and the decaying ones. Contrary to the conventional plane-wave method, the
real-space method can easily realize such mixed boundary conditions suitable for one- and two-dimensional systems. We
just refer to [31,32] for more information on such methods.

5. Details of algorithms

Minimization of the energy functional is two-fold. One minimization is with respect to the electron density or the orbitals,
and the other minimization is with respect to the atomic coordinates. In our computational code, the minimization with re-
spect to atomic coordinates contains the minimization with respect to the orbitals for fixed atomic coordinates as an internal
procedure. This corresponds to the Born–Oppenheimer approximation or the adiabatic approximation. The most time-con-
suming operation is the minimization of the energy functional with respect to the orbitals. This operation is equivalent to
solving the Kohn–Sham equation (12) or (23). In this section, we focus on our computational strategy to solve Eq. (23),
and explain several main subroutines in detail. The method for the energy functional minimization with respect to the atom-
ic coordinates will be summarized in Appendix C.

Eq. (23) appears as a standard eigenvalue problem for the Hermitian matrix of Eq. (24). However, since the Kohn–Sham
Hamiltonian depends on its eigenfunctions through the density equation (1), we must satisfy the following self-consistency
conditions for the electron density
qoutput½qinput� � qinput ¼ 0 ð29Þ
or the same condition can be written in terms of the potential
V ½qoutput� � V ½qinput� ¼ 0: ð30Þ
In these equations, qinput and qoutput are the input and output electron densities, respectively. The latter is constructed from
the updated orbitals using Eq. (1). These equations are solved using Pulay’s direct inversion in the iterative subspace method
[33] or using Broyden’s methods [34].

First, we consider the minimization of the energy functional with respect to the orbitals under a fixed potential. This is
equivalent to solving the eigenvalue problem equations (7) or (12). It is essential to note that, in the Kohn–Sham formulation
of DFT, only the small number of eigen-states corresponding to electron-occupied states is required for constructing the elec-
tron density through Eq. (1). Therefore, the subspace iteration method [35] is suitable to solve the Kohn–Sham eigenvalue
problem. The conjugate-gradient method [36,37] and the residual-minimization method [24] are often used in the elec-
tronic-structure calculations, but the effort to find the best algorithm have been continued. The Chebyshef-filtering method
proposed by Zhou et al. [8] seems promising for large-scale electronic-structure calculations. Many other algorithms also
exist and they have been compared for the characteristics and the performances have been investigated in Ref. [38].

Since the performance of the algorithms generally depend on the problems and tunings, it is difficult to say which one is
the best for the electronic-structure calculations at present. The present RSDFT code is based on a modified version of the
conjugate-gradient algorithm described in Ref. [36]. In order to find the subspace spanned by the eigenvectors associated
with the smallest MB eigenvalues of the Hamiltonian in ML dimension, we minimize the Rayleigh quotients (RQ),
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en ¼
h/njHj/ni
h/nj/ni

: ð31Þ
Here we introduce for convenience the bra-ket notation, defined as
h/njHj/ni ¼ t~/�nH~/nDX;

h/nj/ni ¼ t~/�n~/nDX:
ð32Þ
Since a local RQ minimum corresponds to an eigen-solution of the equation
H~/n ¼ en
~/n; ð33Þ
we can obtain an approximate subspace through the minimization of RQ. We perform the minimization using the conjugate-
gradient (CG) method, but other approaches may be used to obtain an approximate subspace [24].

After the RQ minimization, we ortho-normalize the orbitals using the Gram–Schmidt (GS) procedure, and then we refine
the subspace through subspace diagonalization (SD) (or Rayleigh–Ritz projection). Approximate eigenvectors are obtained as
the resultant Ritz vectors, and are used as the initial vectors for the next iteration. We call the above procedure the Rayleigh–
Ritz (RR) iteration, and we perform this iteration until the subspace converges sufficiently to be that spanned by the
eigenvectors.

We now address the issue of self-consistent calculations. During the RR iteration, we also perform another iterative cal-
culation that ensures self-consistency among the orbitals, density, and potentials, as mentioned above. We update the den-
sity and the potentials after the GS procedure, and then we perform SD with the updated potentials. We have experienced
that the convergence behavior of self-consistent calculations improves when the update is performed between the GS and
the SD procedures. We call the RR iteration with the update of the density and the potentials, the self-consistent field (SCF)
iteration. The flow chart of the SCF iteration is summarized in Fig. 1.

In the following subsections, we present in detail the computation and communication algorithms of several main
subroutines.

5.1. Conjugate-gradient minimization

Let us consider that we have MB ortho-normalized orbitals as an initial guess for the MB eigenfunctions of the Hamilto-
nian, and then we update the orbitals so as to minimize the RQs of Eq. (31) while maintaining the ortho-normalization con-
dition equation (21) to the extent possible. The algorithm of the CG minimization can be found elsewhere [4,36], and we also
give a brief summary of CG and the preconditioning in Appendix D.

Although the ortho-normalization constraints can be imposed explicitly in the CG procedure, we omit them for several
reasons. First, the computational cost for ortho-normalization is extremely high. Second, the update of each orbital can be
performed independently, so that parallel computation becomes possible for each orbital. Third, at a local minimum, the
RQs remain unchanged under first-order variations of the orbital, so that components of other eigenfunctions are hardly
mixed with the eigenfunction being optimized in the CG procedure. We have found that the CG procedure without the
ortho-normalization constraints actually works well.

The number of CG iterations for each orbital is limited to 3–5, because the convergence efficiency is unchanged for more
iterations. Most of the computational costs are incurred by Hamiltonian operations, calculations of inner products, and the
preconditioning operation. The operation of the Hamiltonian matrix is performed through a subroutine call, the details of
which are the subject of the next subsection.

5.2. Hamiltonian operation

The Hamiltonian equation (24) is constructed from three operators: FD operators, and local and non-local potential oper-
ators. In Cartesian coordinates the operation of the FD Laplacian on an orbital is performed as
@2

@x2 þ
@2

@y2 þ
@2

@z2

 !
/ðxi; yi; ziÞ �

XMD

m¼�MD

Cm/ðxi þmHx; yi; ziÞ þ
XMD

m¼�MD

Cm/ðxi; yi þmHy; ziÞ þ
XMD

m¼�MD

Cm/ðxi; yi; zi þmHzÞ;

ð34Þ
where Hx; Hy; Hz are the grid spacings in each direction, and Cm’s are the coefficients of the FD. When the order MD formula
is employed, we refer to the values of the orbital at 3� 2MD points near the point ðxi; yi; ziÞ, so that the matrix of the FD Lapla-
cian has at most only 6MD þ 1 non-zero elements per row. This means that the FD matrix is sparse. The coefficients of the
higher-order FD and its accuracy is discussed in Appendix A. In Fig. 2, we show what effects the grid-spacing choice and the
FD order have on a total-energy calculation.

In the parallel FD computation, the orbital values near a boundary between two sub-domains are exchanged via the com-
munications with the message passing interface (MPI) library. For a single orbital, the number of data sent to and received
from a neighbor is MD �Ms, where Ms is the number of grid points within the areas in contact between the two sub-domains.
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Several possible manners exist for sending and receiving the data for MB orbitals: MB communications with MD �Ms data, a
single communication with MB �MD �Ms data, or several communications with an appropriate set of packed data. The cost
of the communications will be discussed later.

Since the local potential matrix is diagonal, its operation on an orbital is straightforward:
ðV~/Þi ¼ vðriÞ/ðriÞ: ð35Þ
The operation of the non-local potential equation (18) is constructed in two steps. First, we compute an inner product
between a projector function palm and an orbital /,
balm ¼ Calm

Z
Xa

drpalmðrÞ/ðrÞ � Calm

X
j2Xa

pj�
alm/jDV ð36Þ
and then we compute the linear combination
ðVNL
~/Þi ¼

XN

a¼1

XLa

l¼0

Xl

m¼�l

pi
almbalm; ð37Þ



Fig. 2. Dependence of the total-energy on the order of the finite-difference for several grid-spacings H. The system is cubic Si in the diamond structure. The
unit of the energy and the grid-spacing is in atomic unit.

J.-I. Iwata et al. / Journal of Computational Physics 229 (2010) 2339–2363 2347
where the summation index a covers the number of ions N, and La is usually taken to be 0–2. Thus, the non-local potential
operator has ðLa þ 1Þ2 � N terms. The matrix of the non-local operator is not sparse, but the operation can be performed
through the two vector operations described above. Furthermore, the summation for the inner product equation (36) is al-
ways performed within a small region around each ion irrespective of the system size. Therefore, the computational cost of
the non-local potential operation on an orbital is OðNÞ. The integral of the inner product equation (36) is performed within a
small region. However, there is a case that the integral region extends over several nearest-neighbor nodes. In that case, MPI
communications thus occur to perform the inner product within a group of the relevant nodes (sub-domains). The details of
the communication cost will be discussed later.

5.3. Gram–Schmidt orthogonalization

After the CG minimization, we recover the ortho-normalization relations among the orbitals through the GS procedure.
Since the GS procedure is widely applied in many fields in the computational sciences, several algorithms have been pro-
posed to perform these calculations efficiently [39–41]. We have also developed a GS algorithm suitable for the RSDFT
[42], and the computational cost of the GS is thereby substantially reduced. A brief explanation of the GS algorithm adopted
in the present code is given below:
~u1 ¼ ~/1;

~u2 ¼ ~/2 � ~u1 ~u�1 � ~/2

� 	
;

~u3 ¼ ~/3 � ~u1 ~u�1 � ~/3

� 	
� ~u2ð~u�2 � ~/3Þ;

~u4 ¼ ~/4 � ~u1 ~u�1 � ~/4

� 	
� ~u2 ~u�2 � ~/4

� 	
� ~u3 ~u�3 � ~/4

� 	
;

~u5 ¼ ~/5 � ~u1 ~u�1 � ~/5

� 	
� ~u2 ~u�2 � ~/5

� 	
� ~u3 ~u�3 � ~/5

� 	
� ~u4 ~u�4 � ~/5

� 	
;

~u6 ¼ ~/6 � ~u1 ~u�1 � ~/6

� 	
� ~u2 ~u�2 � ~/6

� 	
� ~u3 ~u�3 � ~/6

� 	
� ~u4 ~u�4 � ~/6

� 	
� ~u5 ~u�5 � ~/6

� 	
;

..

.

ð38Þ
Eq. (38) is the usual algorithm of the GS procedure (we omitted the normalization steps for simplicity). At first sight, the
operations seem to be constructed from inner products and scalar-by-vector products. However, a part of the operations
can be grouped and regarded as matrix-by-matrix products. As an example, consider the case that we have three ortho-nor-
malized orbitals f~u1; ~u2; ~u3g, and we want to ortho-normalize the remaining orbitals f~u4; ~u5; ~u6g. The first four terms of the
right-hand side of the last three lines of Eq. (38) can be rewritten as
ð~/4; ~/5; ~/6Þ � ð~u1; ~u2; ~u3Þ

t~u�1
t~u�2
t~u�3

0
B@

1
CAð~/4;~/5;~/6Þ; ð39Þ
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showing that we can perform part of the calculation using matrix products. The above rearrangement of the GS
algorithm can improve the performance substantially, because matrix products can be performed extremely efficiently on
modern computers by employing a highly tuned linear-algebra library (e.g. level 3 of Basic Linear Algebra Subprograms
(BLAS)) [43].

In Fig. 3, we illustrate the algorithm described above. The region to compute is shown in Fig. 3 as a triangular part of an
ðMB � 1Þ � ðMB � 1Þ matrix. In this triangle, we first define a ðMB � 1Þ=2� ðMB � 1Þ=2 square in which matrix multiplication
is possible. Two smaller triangles remain above and to the right side of the square. In these smaller triangles, we also define
squares, and we continue the procedure recursively, until the size of the resulting square is less than 4 � 4. The computa-
tional performance is superior for larger squares. However, for large-sized systems, there is a possibility that the largest
square is not treatable due to memory limitations. In this case, we give as input the maximum square size, and the square
part of the calculations are performed by dividing into several small squares of the desired size.

Our GS algorithm is termed the classical GS. Although the accuracy of classical GS is occasionally problematic, we confirm
that it works well within double precision accuracy, even for a large-system with 20,000 orbitals. The size of the entire vector
space, which is equal to the number of grid points ML, is about 100 times larger than the number of orbitals MB, and we apply
the GS procedure only for the MB orbitals. In such a situation, the classical GS does not suffer from numerical inaccuracy.

5.4. Subspace diagonalization

After the CG and GS, we perform SD. In SD, we reduce the ML-dimension eigenvalue problem an MB-dimension problem,
Fig. 3.
triangu
H1;1 H1;2 � � � H1;MB

H2;1 H2;2 � � � H2;MB

..

. ..
. ..

.

HMB;1 HMB;2 � � � HMB;MB

0
BBBB@

1
CCCCA

c1
n

c2
n

..

.

cMB
n

0
BBBBB@

1
CCCCCA ¼ en

c1
n

c2
n

..

.

cMB
n

0
BBBBB@

1
CCCCCA; ð40Þ
where Hi;j is
Hi;j¼t~u�i H~ujDX: ð41Þ
We solve Eq. (40) for all eigenvalues and eigenvectors. Finally, we compute the Ritz vectors as
~/n ¼ c1
n~u1 þ c2

n~u2 þ � � � þ cMB
n ~uMB: ð42Þ
We adopt the MB Ritz vectors as the approximate eigenvectors, and also use them as initial vectors for the next RR iteration.
Since the matrix appearing in Eq. (40) is Hermitian, we need only compute the matrix elements for the lower (or upper)

triangular part:
t~u�1~h1

t~u�2~h1
t~u�2~h2

t~u�3~h1
t~u�3~h2

t~u�3~h3

t~u�4~h1
t~u�4~h2

t~u�4~h3
t~u�4~h4

t~u�5~h1
t~u�5~h2

t~u�5~h3
t~u�5~h4

t~u�5~h5

� � �

: ð43Þ
0

A schematic illustration for an idea to perform the GS calculation in matrix-by-matrix product form recursively. We have to compute the lower
lar part of MB-dimensional matrix, and the squares represent the parts where matrix-by-matrix computations are possible.
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In this equation,~hi ¼ H~uiDX. The number of matrix elements is 1
2 MBðMB þ 1Þ, so the computational cost for matrix construc-

tion scales as O MLM2
B

� 	
� OðN3Þ.

The first three terms of the last three lines of Eq. (43) can be rewritten as
Fig. 4.
numbe
t~u3
t~u4
t~u5

0
B@

1
CAð~h1

~h2
~h3 Þ ð44Þ
so that, as done for GS, a part of the calculation can be gathered and performed as matrix products instead of inner products.
The construction of the Ritz vectors is also performed as matrix products:
ð~/1
~/2 � � � ~/MB Þ ¼ ð ~u1 ~u2 � � � ~uMB Þð~c1 ~c2 � � � ~cMB Þ: ð45Þ
The computational cost for the Ritz vectors also scales as O MLM2
B

� 	
� OðN3Þ.

Before constructing the Ritz vectors, we diagonalize the dense MB-dimensional Hermitian matrix. Although the dimen-
sion of the matrix ðMBÞ is only 1% of the dimension of the original Hamiltonian matrix ðMLÞ, the memory requirement
and computational costs of the diagonalization become prohibitively high for extremely large systems. Therefore, we also
perform a parallel computation for the MB-dimensional diagonalization. For this purpose, we employ the divide-and-conquer
eigensolver for Hermitian (or symmetric) matrices in the Scalable Linear Algebra Package (SCALAPACK) library [44]. In order
to use SCALAPACK, distribute a part of the matrix to each node, and gather the distributed eigenvector to a node. Thus, we
need additional MPI_REDUCE and MPI_BCAST communications to construct the matrix elements and Ritz vectors,
respectively.
6. Performance tests

The predominant portion of the total computational time in RSDFT calculations results from the SCF iterations. Therefore,
in this section we investigate in detail the costs of computations and communications for SCF iterations. To this end, we pres-
ent several test calculations performed by the RSDFT code for periodic systems. The test systems are cubic Si crystals in the
diamond structure, with sizes of 512, 1000, 1728, 2744, and 4096 atoms. Only the gamma point is sampled for the Brillouin
zone integration, allowing us to define the orbitals and related variables as double precision real numbers. The grid-spacing
is chosen as 0.45 Å. These computational parameters are found to provide fairly accurate results for the electronic-structure.
The maximum number of iterations in the CG routine is fixed at 3. The calculations are performed on a massively-parallel
cluster, the PACS-CS, at University of Tsukuba, the properties of which can be found elsewhere [45].

As shown in Fig. 4, most of the computational time is spent for the GS, SD, and CG routines in a single step of the SCF
iterations. The computational costs of GS and SD routines scale as OðN3Þ. The CG routine is constructed from Hamiltonian
operations, preconditioning processes, and the formation of vector inner products. All these computational costs scale as
OðN2Þ. However, the computational time of the CG routine is comparable to that of OðN3Þ routines, because the performance
of the computations in the CG routine is substantially lower than those in the OðN3Þ routines, in which most of the compu-
tations can be performed with level 3 BLAS.

In the following subsections, we discuss the costs of computations and communications incurred by the main subroutines
in more detail through theoretical estimations and practical test calculations.
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6.1. Gram–Schmidt ortho-normalization

The number of floating point operations (FLOPs) for GS using NP processors can be written as
Fig. 5.
comput
MBðMB � 1Þ
2

4
ML

NP
þ 1

� �
þMB 3

ML

NP
þ 1

� �
; ð46Þ
where the first term and the second term come from orthogonalization and normalization, respectively. Since both MB and
ML are proportional to the number of atoms N, the computational cost of GS scales as O M2

BML

� 	
� OðN3Þ. When the orbitals

are double-complex variables, the number of FLOPs in (46) increases four times.
In the GS procedure, we need to compute MBðMB � 1Þ=2þMB inner products of orbitals of ML-dimension, and the inner

products require inter-node communications for MPI_ALLREDUCE. Assuming the binary-tree algorithm, the cost of the com-
munication for an MPI_ALLREDUCE can be written as
TAllreduce ¼ ðLþ D=BÞ � log2NP ; ð47Þ
where L is the latency (in s), D is the data size (in Bytes), B is the band width (in Bytes/s), and NP is the number of CPUs. In the
GS algorithm described in Section 5.3, the number of calls for MPI_ALLREDUCE is 2MB which is the same as that in the naive
algorithm of classical GS. For the 2MB-times MPI_ALLREDUCE, the total data size is
8
MBðMB � 1Þ

2
þ 8MB ðBytesÞ: ð48Þ
In the double-complex calculations, the data size is twice that of Eq. (48). The total cost of communication for MPI_ALLRE-
DUCE thus becomes
TAllreduce ¼ 2MB � Lþ 8MBðMB � 1Þ=2þ 8MB

B

� �
� log2NP ; ð49Þ
which scales as O M2
Blog2NP

� 	
� OðN2log2NPÞ. From Eqs. (46) and (49), we notice that as the number of CPUs increases, the

cost of the computation decreases as � 1=NP , while the cost of the communication increases as � log2NP . Thus, a crossover
point exists at a certain number of CPUs where the cost of communication becomes higher than that of computation.

In Figs. 5 and 6, we show the time required for computation and for communication in the GS routine for the systems with
512 atoms and 1728 atoms, respectively. For the 512-atom system, the communication time becomes longer than the com-
putational time at 128 CPUs. In other words, the granularity of the computation becomes too small by the parallelization
with 128 CPUs. For the 1728-atom system, the computational cost increases by about ð1728=512Þ3 � 38 times of that of
the 512-atom system, and the communication time is always smaller than the computational time up to parallelization with
256 CPUs (see Fig. 6).

6.2. Hamiltonian operation

The operation of the Hamiltonian matrix on an orbital is constructed from the finite-difference, local potential, and non-
local potential operators. When the order of the finite-difference is MD, the number of FLOPs for the finite-difference is
9
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MDMB: ð50Þ
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Times for GS calculation for the bulk Si crystal of 512 atoms. The plots with squares, circles, and crosses represent the times for communication,
ation, and the sum of the two, respectively.
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J.-I. Iwata et al. / Journal of Computational Physics 229 (2010) 2339–2363 2351
In order to exchange the boundary-values with the nearest-neighbor processors, the amount of data sent and received per
direction is
D ¼ 8
ML

NP

� �2=3

�MD �MB ðBytesÞ: ð51Þ
The data is exchanged only with the six nearest neighbors irrespective of the number of nodes. Thus, the total cost of the
communication is
T ¼ 6� L�MB þ 8
ML

NP

� �2=3

MDMB �
1
B

 !
: ð52Þ
The local potential, which is the sum of the ionic pseudopotentials, Hartree potential, and exchange-correlation potential, is a
diagonal matrix, and the operation is straightforward. The number of FLOPs is
2
ML

NP
�MB ð53Þ
and the operations are purely local; i.e., no inter-node communication takes place.
To estimate the computational costs for the non-local operations, we need to know the number of non-local operators and

the number of grid points within a range of each operator. However, since these parameters depend on the other parameters
in complex ways, we use approximate values that are estimated from the configuration of the atoms in each sub-domain of
the unit cell and the range of each non-local operator. The form of the non-local operator is described in Eq. (37), and the
total number of FLOPs for the non-local potential operations for MB orbitals can be written as
4� NNprjXa

DV
1

NP
�MB; ð54Þ
where Nprj, which typically ranges from 1 to 16, is the number of projector functions per atom. Xa is a spherical region, where
the integration of an inner product equation (36) is performed. It can be defined using a cut-off radius Ra as
Xa ¼
4p
3

R3
a : ð55Þ
Xa=DV is the number of grid points within this region. When the integral region extends over several nodes, MPI-commu-
nication is necessary to complete the inner products. As shown in the schematic illustration in Fig. 7, the number of relevant
nodes that share the integral regions is almost unchanged with respect to the total number of nodes, as long as the size of
each sub-domain is not too small. Since the data size is also insensitive to the number of nodes, the communication cost is
almost constant irrespective of the number of nodes required for parallelization. We employ MPI_ISEND and MPI_IRECV for
the inner product computations instead of MPI_ALLREDUCE, because the integral regions are closed within the nearest few
nodes. The communication cost can thus be estimated as
T ¼ 6� Lþ D
B

� �
�MB; ð56Þ
where, as discussed above, the data size D is almost constant.



(a) (b)

Fig. 7. Schematic illustrations to explain the inter-node communication for non-local potential operations. We consider the two-dimensional case for
simplicity: (a) is the case for 9-node parallelization, and (b) is the case for 25-node parallelization. The circles represent the range of the non-local operators.
In both cases, the number of data exchanged with a neighbor node is not so different.
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In Fig. 8, we show the computational time for the three parts of the Hamiltonian operation for the system of 1728 Si
atoms. The majority of the time is spent for the finite-difference and the non-local potential operations. For the finite-differ-
ence operation in the 1728-atom system, the cost of communication is always higher than the cost of computation, and both
costs decrease as the number of nodes increase, as expected from Eqs. (50) and (52). For the non-local potential operation,
the computational cost decreases as the number of nodes increases, while the communication cost is almost constant irre-
spective of the number of nodes.

Fig. 9 shows the performance of the Hamiltonian operation for several system sizes. Since the granularity of the compu-
tation increases, performance improves for the larger systems. However, the FLOPs per second (FLOPS) are significantly low
compared with the theoretical peak performance value of 5:6� NP (GFLOPS), leaving open the possibility of further improv-
ing the algorithms. At present, the computational time for the Hamiltonian operation is comparable to that of OðN3Þ parts in
spite of its OðN2Þ scaling.

6.3. Subspace diagonalization

This routine is implemented by first constructing the matrix, then solving the eigenvalue problem, and finally construct-
ing the Ritz vectors. The computational cost of each part scales as OðN3Þ, and inter-node communication occurs in each part.
In addition to using MPI, SCALAPACK [44] is also used to solve the eigenvalue problem. Accordingly, the matrices are divided
into NP submatrices, and the resulting eigenvectors are stored in divided form in each node.

For matrix construction, we use the same technique as that used in the GS routine, so that most of the computation can be
performed with level 3 BLAS. The number of FLOPs is the sum of
MBðMB þ 1Þ
2

2
ML

NP
þ 1

� �
ð57Þ
and the FLOPs for Hamiltonian operation discussed in the previous subsection.
Since the matrices have to be divided for the SCALAPACK routine, we use MPI_REDUCE instead of MPI_ALLREDUCE for

computing the matrix elements. The number of calls to MPI_REDUCE is almost the same as the number of nodes for parall-
elization, and the total data size is
D ¼ 8
MBðMB þ 1Þ

2
ðBytesÞ: ð58Þ
Therefore, the cost of communication can be estimated as
Treduce ¼ log2NP � NP � Lþ 8
MBðMB þ 1Þ

2
1
B

� �
: ð59Þ
For the eigenvalue problem, we use the divide-and-conquer eigensolver PDSYEVD and PDHEEVD in SCALAPACK for dou-
ble precision real calculations and double complex calculations, respectively. With this solver, we compute all the MB eigen-
values and eigenvectors. A theoretical estimation of the computational cost of the divide-and-conquer eigensolver is 4M3

B.
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Fig. 10 shows the performance of the PDSYEVD routine for several system sizes. The parallel efficiency is not good because
the performance is significantly affected by the manner in which the matrix is divided.

After solving the eigenvalue problem, we construct the Ritz vectors from the eigenvectors and the orbitals. Since the
eigenvectors are obtained using SCALAPACK, they are stored in a divided form in each node. Therefore, we perform MPI_B-
CAST to distribute a portion of the eigenvectors to all the nodes. The communication cost to accomplish this is estimated as
TBcast ¼ log2NP � L� NP þ
8M2

B

B

 !
: ð60Þ
The number of FLOPs is
2�ML

NP
M2

B: ð61Þ
This computation can also be performed in matrix product form with level 3 BLAS.
In Fig. 11, we show the computational time for several parts of the SD routine. The construction of matrix and Ritz vectors

is the most time-consuming part in SD routine. However, since the parallel efficiency of SCALAPACK routine unsatisfactory,
the computational cost of the PDSYEVD routine becomes highest at 256 parallel nodes. As expected from Eqs. (59) and (60),
the time for MPI_REDUCE and MPI_BCAST increases monotonically as the number of nodes increases.

In Fig. 12, we show the total performance of the SD routine. The GFLOPS/node is 1–3, which is quite good compared with
the theoretical peak performance of 5.6 GFLOPS/node.
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6.4. Conjugate-gradient method

In addition to the SCF iteration, we also perform an iterative calculation in the CG routine. The CG iteration is constructed
from Hamiltonian operations, the preconditioning operation, and several vector operations including inner products (the in-
ner products also need inter-node communications through MPI_ALLREDUCE). Although the computational costs scale as
OðN2Þ, the performance is unsatisfactory because most of the operations are constructed from vector sums and products,
and the communication costs are relatively high. In particular, the preconditioning operation is almost the same as the
FD operation in the Hamiltonian, and the number of calls is a few times larger than that of the Hamiltonian. Consequently,
the cost for MPI_ISEND and MPI_IRECV becomes high, and the efficiency of parallelization drops. Fig. 13 shows the practical
performance of the CG routine, as well as parts of several main operations.

7. Practical applications

We begin this section by showing an example of the application of our RSDFT code to a crystalline Si system with 4096
atoms. The crystalline lattice is diamond structure with a lattice constant of 43.4 Å. The grid-spacing is chosen to be 0.45 Å,
which corresponds to the lattice constant divided into 96 segments. Thus, the total number of grid points is 963 ¼ 884;736
points. For the ionic potentials, we employ the norm-conserving pseudopotential [22] in the separable approximate form
[27], and we treat only the valence orbitals; i.e., the 8192þ a orbitals, where a represents additional unoccupied orbitals,
of which there are few. The computation is performed on the PACS-CS at the University of Tsukuba [45], and the unit cell
is divided into 884 sub-domains by using 256 nodes. The initial orbitals are prepared with a random-number generator,
and ortho-normalized using the GS procedure. The initial electron density is constructed from the sum of the pseudo-atomic
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densities [22], and the initial potential is computed from the initial electron density. Fig. 14 shows the convergence behavior
of the RSDFT calculation for Si4096. The convergence is judged by the norm of the potential difference,
kV ðiÞ � V ði�1Þk2 < g; ð62Þ
where V ðiÞ is the local potential of the ith iteration, and g > 0 is a convergence criterion. For the first 10 iterations, the local
potential is fixed at the initial potential, and then the self-consistent iteration is performed by updating the potential. As
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Fig. 14. Convergence behavior of the SCF calculation for the bulk crystalline Si of 4096 atoms.
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shown in Fig. 14, 40–50 iterations are needed to achieve sufficient convergence. In Table 2, we show the computational time
and performance of the main subroutines. Comparing the time for the CG and GS subroutines, we notice that the computa-
tional time for OðN2Þ and OðN3Þ routines are comparable, because the OðN3Þ computation can be performed under extremely
high performance conditions due to level 3 BLAS. Since the computational time for the single SCF iteration is 776 s, and about
50 iterations are necessary for convergence, we obtain a self-consistent electronic-structure of the 4096 Si atom system in
approximately 10 h.

Next, we present examples the RSDFT code applied to nanometer size Si clusters. The system sizes range from a few hun-
dred atoms to 10,000 atoms. To our knowledge, this is the first time to perform the first-principles calculation for a system of
over 10,000 Si atoms without any assumptions or limitations on the symmetry of the system. The first-principles real-space
calculations for Si nanocrystals of over 800 atoms was achieved by Ogüt et al. in 1997 [46], and the real-space calculations for
Si nanocrystals of thousands of Si atoms was achieved by Zhou et al. by introducing a novel Chebyshef-filtered subspace iter-
ation method and employing the symmetry of the systems in 2006 [8].

Each cluster is terminated by H atoms at the surface, so that the systems have additional H atoms. Grid-spacing is chosen
as 0.45 Å, which is the same as that used in the calculation of the 4096-atom bulk Si. We have confirmed that our results of
the band gaps are changed less than 0.01 eV by reducing the grid-spacing to 0.38 Å. In Fig. 15, we show the density-of-states
(DOS) for 5000- and 6000-atom Si clusters. The DOSs are not significantly different, and these are almost the same as that of
the bulk DOS [47]. The similar result that the DOS of the Si cluster of thousands of atoms is very close to that of the bulk has
also been found by Zhou et al. [8]. In Fig. 16, we show the dependence of the band gap energies on system size. In the infinite-
size limit, the band gap should converge to the bulk band gap. Fig. 16 contains two curves: one is the band gap obtained from
the difference between the highest-occupied and the lowest-unoccupied Kohn–Sham eigenvalues, and the other is the band
gap obtained from the DSCF calculations [3]. Explicitly, the latter is obtained by the following formula
Table 2
Compu
showed

CG
GS
SD (
Tota
EDSCF
g ¼ EðNe þ 1Þ þ EðNe � 1Þ � 2EðNeÞ; ð63Þ
where EðNe þ 1Þ; EðNe � 1Þ, and EðNeÞ represent the total energies of single negative, single positive, and neutral charge-state
systems, respectively. As shown in Fig. 16, the band gap energies decrease as the system size increases, and for the largest
cluster ðSi10701H1996Þ the band gap energy is 0.66 eV from the Kohn–Sham eigenvalue difference and 1.07 eV from the DSCF
calculation. The Kohn–Sham eigenvalue difference is close to the Kohn–Sham band gap of bulk Si, while the DSCF gap is close
to the experimental band gap of 1.17 eV in Si crystals. However, the DSCF gap does not yet appear to converge. We have ana-
lyzed several quantities as a function of the cluster size and conclude that the DSCF band gap becomes the Kohn–Sham gap at
the infinite-size limit. Details will be published elsewhere. In the precedent study by Zhou et al., for the largest cluster, they
have obtained the band gap of 0.7 eV higher than that of their extrapolated value at the bulk limit 0.63 eV [8]. While in our
calculations, the bulk limit is obtained as 0.53 eV, and the band gap of the largest cluster is 0.54 eV higher than that of the
tational time and performances for the bulk crystalline Si of 4096 atoms. For the SD routine, the time and performance of the SCALAPACK routine is also
separately (in the parentheses).

Time (s) MFLOPS/node

304.6 78.77
138.1 3359
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Fig. 15. Density of states for Si5011H1276 and Si6047H1308 clusters. The zero energy corresponds to the highest-occupied state.
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bulk. By considering the slight differences of the bulk limit of the band gap and the size of the largest cluster, the present
result is essentially the same as that previously reported by Zhou et al. [8].

The computational time for the largest 10,000-atom cluster is summarized in Table 3. The total number of grid points ML

is 3,402,059, and the number of orbitals MB is 22,432. The computations are performed on 1024 nodes of PACS-CS (peak per-
formance is 5.7 TFLOPS), and the memory requirement is 1.1 GB/node. Thus, we have demonstrated that a self-consistent
electronic-structure calculation for a 10,000-atom Si system can be accomplished in about 5 days.

Finally, we present examples of the calculations for Si nanowire systems. Since the Si nanowires are promising candidates
for a channel material of the field-effect transistor in the next generation [48], it becomes urgent to understand their elec-
tronic-structures in detail. Several models are examined here: Si nanowires of 4 and 8 nm diameters, and a Si nanowire of
10 nm diameter with surface roughness. The perfect nanowires of 4 and 8 nm diameter consist of 341 and 1361 Si atoms, and
additional 84 and 164 terminating H atoms, respectively. The rough nanowire of 10 nm diameter consists of 12,822 Si atoms
and 1544 terminating H atoms; the details of the construction of the roughness model are described below. The wire axis is
chosen as [100], and periodic boundary condition is imposed along the wire axis. The period is just the lattice constant of
bulk Si (5.43 Å) for the 4 and 8 nm diameter wires, and the 6 times of the lattice constant for the rough wire. Periodic bound-
ary condition is also imposed in the lateral directions with 7 Å separation between the nanowires in adjacent supercells. For
Brillouin zone integration, 4k points are sampled along the wire axis for the 4 and 8 nm diameter wires, and only the one ðCÞ
point is sampled for the rough wire.

The surface roughness is introduced as a random fluctuation of the radius of the nanowire around a average radius. In
cylindrical coordinates, the radius of the rough wire is expressed as follows:
Table 3
Comput

CG
GS
SD
Tota
Rðz; hÞ ¼ R0 þ Dðz; hÞ; ð64Þ
where R0 is the average radius and D is the radius fluctuation. The distribution of the random fluctuation is characterized by
assuming the following autocorrelation function [49,50],
hDðrÞDðrþ r0Þi ¼ D2
me�r0=Lm ; ð65Þ
where Dm is the root-mean-square of the radius fluctuation, and Lm is the correlation length. In our calculations, we took 0.3,
0.54, and 5 nm for Dm; Lm, and R0, respectively.

In Fig. 17, we show the self-consistent electronic charge density and the atomic configuration of the Si nanowire with
surface roughness. Obviously the system has no symmetry. Therefore, the calculation must be performed without any help
of symmetry operation which is utilized to reduce the size of the matrix. The model system consists of 14,366 atoms, and the
total number of grid points is 4,718,592. The total computational time to obtain the self-consistent electronic-structure was
292 h, including 93 iteration steps, with 1024 nodes of the PACS-CS.
ational times for 1-SCF step for Si10701H1996 cluster.

Time (s)

2680
1184
2350

l (1-SCF) 6781



Fig. 17. Cross-sectional view of the self-consistent electronic charge density and the atomic configuration of the Si nanowire with surface roughness. The
yellow balls represent Si atoms, and the silvers represent an isosurface of the electronic charge density.
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In Fig. 18, we show the DOS of the rough and perfect Si nanowires, and also show the DOS of the bulk Si for comparison.
Although the nanowires are typical one-dimensional systems, the DOS of the Si nanowire with large (P8 nm) diameter is
almost same as that of the three-dimensional bulk Si. The band gaps of the nanowires are 0.81, 0.61, and 0.57 eV for the
4 nm diameter, 8 nm diameter, and the rough nanowire, respectively. The band gap approaches to the bulk value as the size
of the nanowire increases. The value of the band gap of the largest nanowire, 0.57 eV, is very close to the bulk value, 0.53 eV.

In the DOS profile of the rough Si nanowire, we can find collapse of several peaks, which are not observed in the DOS of
the bulk and the large (8 nm diameter) nanowire. For thinner (2 nm diameter) Si nanowires, it have been found that several
sharp peaks related to the Van Hove singularities in the DOS profile disappeared by introducing surface roughness [50]. Our
finding of the DOS variation of the rough nanowire may also be related to disappearance of some peaks contributing to the
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Fig. 18. Density of states for (a) Si nanowire of 4 nm diameter, (b) Si nanowire of 8 nm diameter, (c) Si nanowire with surface roughness, and (d) bulk Si. The
energy 0 means the valence band top.
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DOS. Although the band gap remains close to the bulk value, the influence of the surface roughness to the DOS seems to be
large even in the large diameter nanowire.
8. Summary

We have developed RSDFT code suitable for massively-parallel computers, and have demonstrated that the code, which is
based on the usual OðN3Þ formulation, can treat large systems. The code was developed to perform the computations using
matrix products to the extent possible, which substantially improves the performance of OðN3Þ parts of the computations.
We apply the code to 10,000 Si atom systems, and demonstrate that the self-consistent electronic-structure can be obtained
within a few hundred hours using PACS-CS, which is a massively-parallel cluster with theoretical performance in the TFLOPS
range. We have performed such large calculations without any assumption on the symmetry of the systems. Therefore, the
present code is also applicable for amorphous systems and systems with structural roughness.

We are investigating several methods for further improvement of the RSDFT code. We have demonstrated that the real-
space parallelization is highly efficient in our present code. In addition to that, parallelization on the orbital indices (orbital
parallelization) is straightforward and very efficient for the CG routine. While in the GS routine, the orbital parallelization is
not straightforward and unlikely to be efficient because of the complicated dependence among the orbitals and the addi-
tional communication. However, we have found the following fact from our theoretical estimate; as the number of proces-
sors increases, the total communication costs in the GS routine can be lowered by utilizing the orbital–parallel
implementation in spite of the additional communications other than the MPI_ALLREDUCE. The implementation of the orbi-
tal parallelization has almost been completed, and the performance is now under investigation. Dealing with the multicore
and the mutiprocessor architecture is also important ingredient to bring out the best performance of the recent, and the next
generation, parallel computers. For the purpose, we are developing another version of the code, in which MPI is used for in-
ter-node communication and OpenMP is used for intra-node communication, namely the hybrid-parallel version of the code.

We are also researching the best algorithm to solve the Kohn–Sham equation, or in other words the minimization of the
energy functional, for further improvement of the electronic-structure calculations. It is desirable that the algorithm has no
explicit orthogonalization in the minimization or the filtering process and has suitability for parallel computations. The re-
cently-proposed Chebyshef-filtering method [8] satisfies such features and seems promising for large-scale calculations.

We should emphasize that the algorithmic improvements developed for this study is efficient not only for large-scale cal-
culations, but also for reducing the time for medium-scale calculations; this is practically important for our usual work. In
addition, the numerical techniques developed for this study are not limited to our code, but are also applicable to other
methods such as the plane-wave method and the order-N method. The synergy between computational sophistication
and the development of the order-N method are likely to make the first-principle calculations possible for systems with
100,000 or more atoms.
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Appendix A. Coefficients of the higher-order finite-difference approximation

Let us consider Taylor expansions of functions f ðx	mHÞ with respect to mH, which is the grid-spacing multiplied by an
integer m:
f ðxþmHÞ ¼ f ðxÞ þ f 0ðxÞmH þ f 00ðxÞ ðmHÞ2

2!
þ f 000ðxÞ ðmHÞ3

3!
þ � � � ;

f ðx�mHÞ ¼ f ðxÞ � f 0ðxÞmH þ f 00ðxÞ ðmHÞ2

2!
� f 000ðxÞ ðmHÞ3

3!
þ � � � :

ð66Þ
The coefficients of the higher-order finite-difference approximation for the first and second derivatives can be obtained by
taking the appropriate linear combinations of f ðx	mHÞ so as to eliminate the higher-order terms in OðHnÞ (n > 1 for the first
derivative and n > 2 for the second derivative, respectively).

The same coefficients can also be obtained through the Lagrange interpolation formula
f ðxÞ �
XMD

m¼�MD

f ðxmÞL2MD
m ðxÞ; ð67Þ
where L2MD
m ðxÞ is the 2MD-order polynomial
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L2MD
m ðxÞ ¼ ðx� x�MDÞ � � � ðx� xm�1Þðx� xmþ1Þ � � � ðx� xMD Þ

ðxm � x�MD Þ � � � ðxm � xm�1Þðxm � xmþ1Þ � � � ðxm � xMD Þ
: ð68Þ
The finite-difference calculation at the ith grid point is
@f ðxÞ
@x

����
x¼xi

�
XMD

m¼�MD

f ðxi þ xmÞ
@L2MD

m ðxÞ
@x

�����
x¼xi

; ð69Þ

@2f ðxÞ
@x2

�����
x¼xi

�
XMD

m¼�MD

f ðxi þ xmÞ
@2L2MD

m ðxÞ
@x2

�����
x¼xi

; ð70Þ
where the coefficients are obtained from the derivatives of L2MD
m ðxÞ.

By using the 2MD þ 1 terms of f ðx	mHÞ, we can eliminate the higher-order terms in Eq. (66) up to OðH2MD�1Þ and OðH2MD Þ
for the first and second derivatives, respectively. Thus, the errors in the finite-difference approximation are OðH2MD�2Þ, which
is the same for both formulas.
Appendix B. Oblique coordinate system and the finite-difference formula

In periodic systems, it is possible that the unit cell has a non-orthogonal shape. In this case, it is natural to take the coor-
dinates along each lattice vector; i.e., the oblique-coordinate system instead of the Cartesian coordinate system. The coor-
dinate transformation from ~x-coordinates (Cartesian) to the ~n-coordinates (oblique) is performed through a linear
transformation,
~n ¼ T~x: ð71Þ
The transformation matrix T can be written as
T ¼ 1
2p
ða1
~b1; a2

~b2; a3
~b2Þ; ð72Þ
where~bi is the reciprocal lattice vector and ai is the absolute length of the lattice vector; namely ai ¼ j~aij. The gradient oper-
ator and the Laplacian can be written in the ~n-coordinate system as
@

@xi
¼
X3

j¼1

bxi
j

2p
@

@nj
; ð73Þ

r2 ¼
X3

i¼1

@2

@x2
i

¼
X3

i¼1

X3

j¼1

ðai
~biÞ � ðaj

~bjÞ
4p2

@2

@ni@nj
: ð74Þ
Contrary to the~x-coordinate system, the cross-terms appear in the expression for the Laplacian in the~n-coordinate system.
Finite-difference calculations are performed as
@f
@n1
�

XMD

m¼�MD

Bmf ðn1 þmH1; n2; n3Þ; ð75Þ

@2f

@n2
1

�
XMD

m¼�MD

Cmf ðn1 þmH1; n2; n3Þ: ð76Þ
The finite-difference formula for a cross-term can be written naively as
@2

@n1@n2
�

XMd

m¼�Md

XMd

n¼�Md

Dm;nf ðn1 þmH1; n2 þ nH2; n3Þ: ð77Þ
However, the formula is exactly the same as that obtained by applying twice the formula for the first-order derivative; i.e.,
the coefficient Dm;n is written as Dm;n ¼ Bm � Bn.
Appendix C. Structure optimization

In order to get a stable atomic structure using DFT, we perform the energy functional minimization with respect to the
atomic coordinates as well as to the orbitals. The energy minimization with respect to the atomic coordinates can be per-
formed using the CG method. Updating the position Ra of atom a in the ith CG iteration is done using the Helmann–Feynman
force ga:
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pðiÞa ¼ gðiÞa þ cip
ði�1Þ
a ; ð78Þ

ci ¼
gðiÞa � gðiÞa

gði�1Þ
a � gði�1Þ

a
; c1 ¼ 0; ð79Þ

Rðiþ1Þ
a ¼ RðiÞa þ gip

ðiÞ
a ; ð80Þ

gi ¼ gjmin
g

E RðiÞa þ gpðiÞa
h i� 


: ð81Þ
The last step is the functional minimization along the pi direction, which is the line-minimization. In the line minimization,
we examine several points (atomic configurations) along the direction, and at each point we perform the self-consistent to-
tal-energy calculation.

Appendix D. Preconditioned conjugate-gradient method

In order to minimize the RQ,
eð/;/�Þ ¼ h/jHj/ih/j/i ; ð82Þ
we employ the preconditioned CG (PCG) method. We first compute the gradient vector
~g ¼ � @e
@~/�
¼ �1
h/j/i ðH

~/� e~/Þ ð83Þ
and then the following iterative calculation is performed for i ¼ 1 to the maximum number of CG iterations NCG:
~pi ¼ P~gi þ ci~pi�1; ð84Þ

ci ¼
hPgijgii
hPgi�1jgi�1i

; c1 ¼ 0; ð85Þ

~/iþ1 ¼ ai
~/i þ bi~pi: ð86Þ
In this expression, P is the preconditioning matrix. The coefficients ai and bi are chosen so as to minimize e /iþ1;/
�
iþ1

� �
, or,

equivalently, to solve the following eigenvalue problem
h/ijHj/ii h/ijHjpii
hpijHj/ii hpijHjpii

� � ai

bi

� �
¼ e

ai

bi

� �
: ð87Þ
Typically, NCG is taken to be 2–4.
To see the effect of the preconditioning, let us consider the situation where we search the nth eigen-solution ~/ of the

Hamiltonian. The solution ~/ can be expanded using the eigenfunctions of the Hamiltonian:
~/ ¼
X

a

ca
~/a ¼ cn

~/n þ
X
a–n

ca
~/a: ð88Þ
The gradient vector is expressed as
~g ¼ �1
h/j/i cnðen � eÞ~/n þ

�1
h/j/i

X
a–n

caðea � eÞ~/a: ð89Þ
If the preconditioning matrix is chosen as the inverse of the Hamiltonian P � H�1, then the preconditioned gradient vector
can be expressed as
~g ¼ P~g ¼ �1
h/j/i cnðen � eÞH�1~/n þ

�1
h/j/i

X
a–n

caðea � eÞH�1~/a ¼
�1
h/j/i cn 1� e

en

� �
~/n þ

�1
h/j/i

X
a–n

ca 1� e
ea

� �
~/a: ð90Þ
When e � en, the first term of the right-hand side vanishes. When �a 
 �, the summation of the second term becomes
� 1
h/j/i ca 1� e

ea

� �
~/a � �

1
h/j/i ca

~/a: ð91Þ
Thus, when we update the orbital according to
~/next ¼ ~/þ a~g; ð92Þ
the components associated with the higher eigenvalues can be eliminated:
~/next � dn
~/n þ

X
ea<e

da
~/a: ð93Þ
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Although this is not exactly the desired eigensolution ~/n, the surplus terms are also the components within the subspace that
we are seeking. Therefore, we can sort the mixed orbitals ~/next into the eigensolutions through the subsequent GS and SD
procedures.

From the considerations discussed above, we learn that the preconditioning matrix should be constructed as the inverse
of an operator that approximately reproduces the higher eigenvalues of the Hamiltonian. The kinetic energy operator is one
such operator, and in the present code, we employ the kinetic energy operator approximated by MD ¼ 1 finite-difference as
the preconditioning operator. The matrix inversion is also performed using the CG method, but the number of CG iterations is
limited to three. Although three iterations can only give an approximate inverse, this works well as a preconditioning
operator.
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